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Abstract

We can determine the 3He polarization inside polarized 3He target cells by measuring the frequency
shift in the EPR spectrum of alkali atoms. This shift is mostly due to the effective magnetic field
associated with spin-exchange collisions with the polarized 3He nuclei. Since we can only directly measure
the EPR frequency due to the total magnetic field felt by the alkali atoms, we change the sign of the
frequency shift by flipping the 3He spins using the NMR technique of frequency sweep adiabatic fast
passage (AFP). If all else is equal, then the difference in EPR frequencies for the two directions of the
3He spins isolates the frequency shift due to the polarized 3He nuclei: ν↑

EPR − ν↓
EPR = ΔνEPR = 2× (Δν)He.

What complicates this analysis is the fact that the oscillating NMR RF field used for AFP also causes
a small frequency shift (Δν)rf, in this case, due to the AC Zeeman effect. If the magnitude of the NMR
RF field changes during AFP, then its corresponding frequency shift is different for the two directions of
the 3He spins. Under this condition, the partially canceled frequency shift due to the NMR RF field also
contributes to & contaminates the EPR frequency difference: ΔνEPR = 2 × (Δν)He + [(Δν)↑rf − (Δν)↓rf)].
This could potentially be a large systematic error in the determination of the 3He polarization. We’ll
(1) describe the problem in more detail, (2) calculate the absolute size of the frequency shifts due to the
polarized 3He nuclei & the NMR RF fields used for AFP and (3) present an the experimental study of
this effect. Finally, we’ll note that this effect can be completely eliminated by the measuring the EPR
frequencies only when the NMR RF field is turned off.
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1 Description of the “NMR RF Shift” Effect

The result of a typical EPR measurement at UVa is shown in Fig. (1). At the start of an EPR polarization
measurement, the total static magnetic field seen by the alkali atoms is B = B0 + BHe, which corresponds
to an EPR frequency of:

(ν↑
EPR)off = ν0 + (Δν)He (1)
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Figure 1: Typical EPR Measurement Sequence. The He spins are flipped using frequency sweep NMR-AFP.
The top plot shows the entire data set which includes four 3He spin flips. The shift due to the NMR RF field
at 30.0 kHz can be seen at 75 sec < t < 175 sec, 250 sec < t < 325 sec, and finally 425 sec < t < 500 sec.
Note that the sign of the RF shift is independent of the direction of the 3He spins. The shift due to the
NMR RF field at 56.6 kHz is much smaller, but is visible at 0 sec < t < 70 sec, see the bottom plot. Because
the NMR RF coil resonates at about 20 kHz, the amplitude of the RF field at 30.0 kHz is much larger than
the amplitude of the RF field at 56.6 kHz for the same function generator set amplitude Vset = 300 mV.
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Under our typical conditions, B0 = 13 G and, for the “well state” transition of 39K, the EPR frequency is
around 9.7 MHz. After measuring this EPR frequency for several seconds, the NMR RF field is turned on
with a frequency of 56.6 kHz. This NMR RF field causes an additional shift in the EPR frequency:

(ν↑
EPR)on = ν0 + (Δν)He + (Δν)↑rf (2)

After again measuring the EPR frequency for several seconds, the NMR RF frequency is swept over a period
of 6 seconds from 56.6 kHz, through resonance at 42.2 kHz, to 30.0 kHz. The rate is chosen to be fast enough
to minimize the 3He relaxation at resonance, but slow enough for the 3He spins to follow the effective field
in the rotating frame adiabatically. After the spins have been flipped, the total static magnetic field felt by
the alkali atoms is B = B0 − BHe which corresponds to an EPR frequency of:

(ν↓
EPR)on = ν0 − (Δν)He + (Δν)↓rf (3)

and then we turn the NMR RF off to measure:

(ν↓
EPR)off = ν0 − (Δν)He (4)

To conclude the EPR measurement, we follow the same steps already mentioned, but in reverse order:

1. turn the NMR RF on at 30.0 kHz

2. measure the EPR frequency

3. sweep the NMR RF frequency from 30.0 kHz to 56.6 kHz

4. measure the EPR frequency

5. turn the NMR RF off

6. measure the EPR frequency

In addition to this measurement sequence, Fig. (1) also shows the results of an analogous measurement
sequence for which the NMR frequency sweep from 30.0 kHz to 56.6 kHz and then back to 30.0 kHz. Using
these measurements, there are two frequency differences that can be used to extract the 3He polarization:

Δ(νEPR)on = (ν↑
EPR)on − (ν↓

EPR)on = 2 × (Δν)He +
[
(Δν)↑rf − (Δν)↓rf)

]
(5)

Δ(νEPR)off = (ν↑
EPR)off − (ν↓

EPR)off = 2 × (Δν)He (6)

If there is no shift associated with the NMR RF field ((Δν)↑rf = (Δν)↓rf = 0) or if the size of frequency shift
associated with the NMR RF field stays the same after the 3He spins are flipped ([(Δν)↑rf − (Δν)↓rf)] = 0),
then the two frequency differences are identical. However, at least at UVa, this is not the case.

Based on Figs. (1) & (2), we’ll make the following observations of the what we call “NMR RF Shift”
Effect:

1. the size of (Δν)rf has no measurable dependence on the sign and magnitude of the 3He polarization

2. the size of (Δν)rf at 13 Gauss appears to in the kHz range for both 85Rb and 39K

3. the sign of (Δν)rf is positive for both the “well” state transition −(I + 1/2) ↔ −(I − 1/2) and the
“hat” state transition +(I + 1/2) ↔ +(I − 1/2)

4. the size of (Δν)rf increases with the NMR RF amplitude and decreases with the NMR RF frequency

Originally, we thought that (Δν)rf �= 0 was due to a direct coupling between the NMR RF coils and the
photodiode used for EPR. We tested this hypothesis by increasing the distance between the EPR photodiode
and the NMR RF coils. The fluorescence from the cell needed as an input to the EPR feedback circuit was
captured by an optical fiber instead of the photodiode directly. Because we used a very long optical fiber,
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Figure 2: EPR in the High Energy or “Hat” State for 39K (top) and 85Rb (bottom) at 13 Gauss. In the top
plot, we see that the shift depends on NMR frequency. This is because circuit used to drive the NMR RF
coils resonates at about 20 kHz. In the bottom plot, we see that the NMR RF shift in independent of the
size of the shift due to the polarized 3He gas.
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the distance between the EPR photodiode and NMR RF coils was several meters. When we performed the
EPR measurement under these conditions, we still observed a frequency shift when the NMR RF was turned
on and off.

Our new hypothesis (which we believe is correct) is that the NMR RF field directly interacts with the
alkali atoms to produce a frequency shift via the AC Zeeman effect. Under our experimental conditions,
B0 > 10 Gauss, ν0 > 5 MHz, νrf = (40 ± 20) kHz, Brf < 0.5 Gauss, and, using the results of Sec. (3), the
size of the shift is given by:

(Δν)rf =
F (F + 1) − m(m − 1)

4νEPR

[
∂ν

∂B
Brf

]2

(7)

where F = I ± 1/2, I is the nuclear spin of the alkali atom, νEPR is the frequency of the |F,m〉 ↔ |F,m − 1〉
transition, ∂ν/∂B is given by Eqn. (9), and Brf is the amplitude of the NMR RF Field in the lab frame.
Tab. (2) lists the quantitative size of the shift for 85Rb and 39K under our conditions. Because, for incidental
historical reasons, the NMR RF coils resonate at 20 kHz (see Fig. (3)), the NMR RF field amplitude is higher
at 30.0 kHz than at 56.6 kHz for the same set control voltage, which implies (Δν)↑rf �= (Δν)↓rf. Therefore,
in order to avoid all these difficulties, it is much better to use Δ(νEPR)off than Δ(νEPR)on to calculate the
3He polarization. To do this, all you have to do is take data with the NMR RF field off before and after the
AFP frequency sweep.

2 Calculating the Shift Due to Polarized 3He

More details about the EPR polarimetry method can be found in [1, 2, 3, 4]. To convert from the frequency
shift (Δν)He to the effective field associated with the polarized 3He , we make the following approximation:

BHe = (Δν)He ×
(

∂ν

∂B

)−1

(8)

Up to fifth order in field, the derivative is:

∂ν±
∂B

=
(gIμN − gSμB)

h[I]

5∑
n=0

bn
xn

[I]n
(9)

x = (gIμN − gSμB)
B

hνhfs
(10)

[I] = 2I + 1 (11)

b0 =
1 ± gIµN

gSµB
([I] ∓ 1)

1 − gIµN

gSµB

= 1 ∓O(10−3) (12)

b1 = 2 (1 − 2m) (13)

b2 = 6
(

1 − 3m + 3m2 − [I]2

4

)
(14)

b3 = 20
(
1 − 4m + 6m2 − 4m3

) − 6[I]2 (1 − 2m) (15)

b4 = 70
(
1 − 5m + 10m2 − 10m3 + 5m4

) − 25[I]2
(
1 − 3m + 3m2

)
+

15[I]4

8
(16)

b5 = 252
(
1 − 6m + 15m2 − 20m3 + 15m4 − 6m5

)
−105[I]2

(
1 − 4m + 6m2 − 4m3

)
+

45[I]4

4
(1 − 2m) (17)

where I is the nuclear spin, gI is the nuclear g-factor, μN is the nuclear magneton, h is the Planck constant,
[I] = 2I +1, and νhfs is the zero-field hyperfine splitting between F = I +1/2 and F = I −1/2, see Tab. (1).
For the special case of end transitions, F = I + 1/2 and m = I + 1/2 for I + 1/2 ↔ I − 1/2 & m = −I + 1/2
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Isotope I upper F End gI νhfs
Transition MHz

6Li 1 3/2 s3/2 ↔ s1/2 +0.822 056 228.205 26
7Li 3/2 2 s2 ↔ s1 +2.170 960 803.504 09

23Na 3/2 2 s2 ↔ s1 +1.478 347 1 771.626 13

39K 3/2 2 s2 ↔ s1 +0.260 973 461.719 72
40K 4 9/2 s9/2 ↔ s7/2 −0.324 5 -1 142.92
41K 3/2 2 s2 ↔ s1 +0.143 247 254.013 87

85Rb 5/2 3 s3 ↔ s2 +0.541 208 3 035.732 00
87Rb 3/2 2 s2 ↔ s1 +1.834 133 6 834.682 60

133Cs 7/2 4 s4 ↔ s3 +0.736 857 9 192.631 77

Table 1: Hyperfine Structure Data for Alkali Atoms. F = I + 1/2 for the upper manifold and s = ±.

for −I + 1/2 ↔ −I − 1/2 and the coefficients for the expansion of the derivative of the EPR frequency are:

b0 =
1 + gIµN

gSµB
(2I)

1 − gIµN

gSµB

= 1 −O(10−3) (18)

b1 = ∓4I (19)
b2 = 6I (2I − 1) (20)
b3 = ∓8I

(
4I2 − 6I + 1

)
(21)

b4 = 10I (2I − 1)
(
4I2 − 10I + 1

)
(22)

b5 = ∓12I
(
16I4 − 80I3 + 80I2 − 20I + 1

)
(23)

where ± refers to the edge state m = ± (
I + 1

2

)
involved in the transition. Once we have BHe, we can find

the He-3 polarization from the effective field due to the He-3 using:

BHe =
2μ0

3
(κ0 − 1 + κgeo) [He]gHeμN

PHe

2
(24)

where μ0 is the magnetic permeability of free space, κ0 is the empirical shift constant, κgeo is a geometric
factor, [He] is the He-3 number density, gHe = −4.254995446 is the He-3 g-factor, μN is the nuclear magneton,
PHe = 2 〈Sz〉 is the He-3 polarization. The values for κ0 are given by [4, 5]:

Rb : κ0 = 6.39 + 0.00924 · (T − 200 oC) (25)
K : κ0 = 5.99 + 0.0086 · (T − 200 oC) (26)

Na : κ0 = 4.84 + 0.00914 · (T − 200 oC) (27)

The geometric factor κgeo is the ratio of the classical magnetic field produced by the He-3 for the cell
geometry averaged over the alkali sampling volume (ASV) to the classical magnetic field produced by a
uniformly polarized spherical He-3 sample with the same density and polarization:

κgeo =
1

VASV

∫
ASV

ẑ · �Bc dV

ẑ · �Bsphere

�Bsphere =
2μ0

3
[He]gHeμN

PHe

2
ẑ (28)

where ẑ is the direction of the holding field. The classical field �Bc can be calculated using the method of
magnetic scalar potentials (See section 5.9 of Blue Jackson [6]):

�Bc = μ0

(
�Hc + �Mc

)
�Hc = −�∇ΦM

�Mc = [He]
gHeμN

2
�Pc(�r) (29)
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where �Pc(�r) is the possibly position dependent He polarization vector. For a uniformly polarized region
bounded by a surface S, the magnetic scalar potential is given by:

ΦM (�r) =
1
4π

∫
S

n̂′ · �Mc(�r ′)
|�r − �r ′| dA′ (30)

where n̂′ is the normal unit vector pointing out of S at a position �r ′ on the surface S. For a region far from
the polarized He-3, the magnetic scalar potential is given by:

ΦM (�r) =
V �Mc × �r

4πr3
(31)

where V is the total volume of the region containing the polarized He-3. The value of κgeo for a few different
geometries are given here:

1. κgeo = 1 for a uniformly polarized sphere

2. κgeo = 3/2 for an infinitely long cylinder polarized along its axis

3. κgeo = 3/4 for an infinitely long cylinder polarized perpendicular to its axis

In quantitative terms, the effective field felt by the alkali metal due to the polarized He-3 vapor is:

BHe =
2μ0

3
(κ0 − 1 + κgeo) [He]gHeμN

PHe

2
(32)

= (−14.5 milligauss)
[
κ0 − 1 + κgeo

6

] (
[3He]
1 amg

)[
PHe

100%

]
(33)

3 Calculating the Shift Due to the NMR RF Field: The AC Zee-
man Effect

To calculate the shift due to the AC Zeeman effect, we’ll follow and in some cases generalize the basic
arguments found in problem 2.7 of [7]. Since we are only interested in a given Zeeman transition within the
EPR spectrum, we’ll focus only on the states involved in the transition. This results in a two state system
(|m〉 & |m − 1〉) with a Hamiltonian written as:

H0 = h̄ω0Fz (34)

where Fz is the z-component of the total atomic angular momentum, h̄ is the Planck constant divided by 2π,
and ω0 is the EPR frequency for the transition for a magnetic field B0. If another much smaller magnetic
field B1 � B0 is turned on, then we can write the additional Zeeman interaction as:

H1 = −μ · �B1 = −gμB
�F · �B1 (35)

where g is the effective or Landé g-factor, μB is the Bohr magneton, and �F is the total atomic angular
momentum. In general, g depends on the total magnetic field in the z-direction, the hyperfine manifold F ,
and the magnetic substate m. Its form can be obtained by considering the case when �B1 is in the z-direction
(the same direction as �B0). In this case, the total Hamiltonian can be written in two ways:

H = H0 + H1 = h̄ωFz = h̄ω0Fz − gμBFzB1 (36)

Taylor expanding ω = ω(B0 + B1) about B0 gives:

ω(B0 + B1) = ω(B0) + (B0 + B1 − B0)
∂ω

∂B
= ω0 + B1

∂ω

∂B
(37)
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Putting this together gives the form of the effective g-factor:

h̄ωFz − h̄ω0Fz = −gμBFzB1 → g = −
(

h̄

μB

)
∂ω

∂B
(38)

where the derivative is evaluated at B0.
We’ll now consider the case of an oscillating RF field in the x-direction:

H = h̄ω0Fz − gμBFxBrf cos(ωrft) (39)

where Brf is the amplitude of the RF field in the lab frame and ωrf is the angular frequency of the RF field.
In general, the non-zero matrix elements of Fz and Fx = (F+ + F−)/2 are:

〈m|Fz |m〉 = m 〈m − 1|Fz |m − 1〉 = m−1 〈m − 1|Fx |m〉 = 〈m|Fx |m − 1〉 =

√
F (F + 1) − m(m − 1)

2
(40)

Using these formulas, we can rewrite the Hamiltonian using the Pauli spin matrices:

H = h̄ω0m̄ + h̄ω0σz/2 + h̄Ωrfσx cos(ωrft)/2 (41)

where m̄ = m − 1/2 is the mean m associated with the transition and Ωrf is given by:

Ωrf =
∂ω

∂B
Brf

√
F (F + 1) − m(m − 1) (42)

Since h̄ω0m̄ is an overall constant energy offset, we can safely drop it from the Hamiltonian. For convenience,
we’ll relabel two eigenstates of H0 as |a〉 = |m〉 and |b〉 = |m − 1〉. The eigenstates of the full Hamiltonian
H are denoted as |1〉 & |2〉 and can be expanded as:

|1〉 = a1 exp(−iω0t/2) |a〉+ b1 exp(+iω0t/2) |b〉 |2〉 = a2 exp(−iω0t/2) |a〉+ b2 exp(+iω0t/2) |b〉 (43)

where orthonormality enforces:

|a1|2 + |b1|2 = |a2|2 + |b2|2 = 1 a∗
1a2 + b∗1b2 = 0 (44)

Because we’ve chose to expand |1〉 & |2〉 in this way, they automatically satisfy the Schrodinger equations
with a1 = b2 = 1 & a2 = b1 = 0 when there is no RF field Ωrf = 0. Our goal now is to obtain a solution
correct to the lowest order for the case when 0 < Ωrf � ω0.

Applying Schrodinger equation to |1〉, we get a pair of coupled equations:

ih̄(ȧ1 − iω0a1/2) exp(−iω0t/2) = +(h̄ω0a1/2) exp(−iω0t/2) + (h̄Ωrfb1/2) exp(+iω0t/2) cos(ωrft)(45)
ih̄(ḃ1 + iω0b1/2) exp(+iω0t/2) = −(h̄ω0b1/2) exp(+iω0t/2) + (h̄Ωrfa1/2) exp(−iω0t/2) cos(ωrft)(46)

After rearranging a few things we get:

ȧ1 = −(iΩrfb1/2) exp(+iω0t) cos(ωrft) (47)
ḃ1 = −(iΩrfa1/2) exp(−iω0t) cos(ωrft) (48)

Since Ωrf is small, it’s not unreasonable to assume that |a1| ≈ 1. In other words, we’ll make the ansatz that
a1 = exp(−iω!t). Using this form of a1 allows us to directly integrate ḃ1 to give:

b1 =
∫

ḃ1 dt = −(iΩrf/2)
∫

exp(−i(ω1 + ω0)t) cos(ωrft) dt (49)

= −(iΩrf/4)
∫

[exp(−i(ω1 + ω0 − ωrf)t) + exp(−i(ω1 + ω0 + ωrf)t)] dt (50)

= −(iΩrf/4)
[
exp(−i(ω1 + ω0 − ωrf)t)

−i(ω1 + ω0 − ωrf)
+

exp(−i(ω1 + ω0 + ωrf)t)
−i(ω1 + ω0 + ωrf)

]
(51)

=
Ωrf

4

[
exp(−i(ω1 + ω0 − ωrf)t)

ω1 + ω0 − ωrf

+
exp(−i(ω1 + ω0 + ωrf)t)

ω1 + ω0 + ωrf

]
(52)
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Using this solution for b1 and the ansatz for a1, we can now apply the equation for ȧ1:

ȧ1 = −(iΩrfb1/2) exp(+iω0t) cos(ωrft) (53)

−iω1 exp(−iω1t) = −i
Ω2
rf

8
exp(+iω0t) cos(ωrft)

[
exp(−i(ω1 + ω0 − ωrf)t)

ω1 + ω0 − ωrf

+
exp(−i(ω1 + ω0 + ωrf)t)

ω1 + ω0 + ωrf

]
(54)

ω1 =
Ω2
rf

8
cos(ωrft)

[
exp(+iωrft)

ω1 + ω0 − ωrf

+
exp(−iωrft)

ω1 + ω0 + ωrf

]
(55)

=
Ω2
rf

16
[exp(+iωrft) + exp(−iωrft)]

[
exp(+iωrft)

ω1 + ω0 − ωrf

+
exp(−iωrft)

ω1 + ω0 + ωrf

]
(56)

=
Ω2
rf

16

[
1 + exp(+2iωrft)

ω1 + ω0 − ωrf

+
1 + exp(−2iωrft)

ω1 + ω0 + ωrf

]
(57)

(58)

Our first approximation will be to drop the rapidly oscillating terms to get:

ω1 =
Ω2
rf

8

[
ω1 + ω0

(ω1 + ω0)2 − ω2
rf

]
(59)

Our second approximation is that ω1 � ω0, which allows us to solve for ω1:

ω1 =
Ω2
rf

8

[
ω0

ω2
0 − ω2

rf

] [
1 +

ω1

ω0

] [
1 +

2ω1ω0 + ω2
1

ω2
0 − ω2

rf

]−1

(60)

≈ Ω2
rf

8

[
ω0

ω2
0 − ω2

rf

] [
1 − ω1

ω0

(
ω2

0 + ω2
rf

ω2
0 − ω2

rf

)]
(61)

=
Ω2
rf

8

[
ω0

ω2
0 − ω2

rf

] [
1 +

Ω2
rf(ω

2
0 + ω2

rf)
8(ω2

0 − ω2
rf)2

]−1

(62)

For self-consistency, this approximation necessarily implies that Ωrf � ω0 which is roughly equivalent to
our earlier assertion that Brf � B0. Our third and final approximation is that the frequency of the RF field
is far from resonance, ωrf � ω0, which finally gives:

ω1 =
Ω2
rf

8

[
ω0

ω2
0 − ω2

rf

] [
1 +

Ω2
rf(ω

2
0 + ω2

rf)
8(ω2

0 − ω2
rf)2

]−1

≈ Ω2
rf

8ω0
(63)

We can follow this same calculation for |2〉 where a2 plays the same role as b1, b2 plays the same role as
a1, and we must flip the sign of ω0:

a2 =
Ωrf

4

[
exp(−i(ω2 − ω0 − ωrf)t)

ω2 − ω0 − ωrf

+
exp(−i(ω2 − ω0 + ωrf)t)

ω2 − ω0 + ωrf

]
(64)

b2 = exp(−iω2t) (65)

ω2 ≈ −Ω2
rf

8ω0
(66)

Putting this altogether gives:

|1〉 = exp(−i(ω0/2 + ω1)t) |a〉 + b1 exp(+iω0t/2) |b〉 (67)
|2〉 = a2 exp(−iω0t/2) |a〉 + exp(+i(ω0/2 − ω2)t) |b〉 (68)

b1 = +
Ωrf

4ω0
exp(−i(ω1 + ω0)t) cos(ωrft) (69)

a2 = −Ωrf

4ω0
exp(−i(ω2 − ω0)t) cos(ωrft) (70)

ω1 = −ω2 =
Ω2
rf

8ω0
(71)
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B0 isotope I m ν0 ∂ν/∂B (Δν)rf (Δν)He

Gauss ±[I]/2 MHz kHz/G kHz/G2 kHz/amg

13

85Rb 5/2 +3 6.01 458 52.4 −7.08
−3 6.13 476 55.4 +7.36

39K 3/2 +2 8.59 622 45.0 −9.01
−2 9.67 788 64.2 +11.4

23

85Rb 5/2 +3 10.55 451 28.9 −6.97
−3 10.93 484 32.1 +7.48

39K 3/2 +2 14.54 569 22.3 −8.24
−2 17.91 863 41.6 +12.5

Table 2: EPR Frequency Shifts for the End Transitions Due to the NMR RF Field & Polarized 3He. We’ve
assumed that Brf � B0 and νrf � ν0. The −(+) sign for m refers to the “well” (“hat”) state. For the
shift due to the polarized 3He, we’ve assumed a spherical sample at a temperature of 200 oC and 100%
polarization. The sign of the polarization is taken to be the same as the sign of the alkali m state.

To lowest order, the energy levels are:

〈1|H |1〉 = 〈1| ih̄∂ |1〉
∂t

≈ +h̄(ω0/2 + ω1) (72)

〈2|H |2〉 = 〈2| ih̄∂ |2〉
∂t

≈ −h̄(ω0/2 − ω2) (73)

and finally the frequency is:

ω =
〈1|H |1〉 − 〈2|H |2〉

h̄
= ω0 + ω1 − ω2 = ω0 +

Ω2
rf

4ω0
= ω0

[
1 +

(
∂ω

∂B

Brf

2ω0

)2

(F (F + 1) − m(m − 1))

]
(74)

The AC Zeeman frequency shift due to an RF field for the transition |F,m〉 ↔ |F,m − 1〉 when Brf � B0

and νrf � ν0 is, to lowest order, given by:

(Δν)rf =
F (F + 1) − m(m − 1)

4ν0

[
∂ν

∂B
Brf

]2

(75)

where Brf is the magnitude of the RF field in the lab frame, ν0 is the frequency of the transition when
Brf = 0, and the derivative for F = I ± 1/2 is given by (up to fifth order in field) Eqn. (9). For the
special case of end transitions, F = I + 1/2 and m = I + 1/2 for I + 1/2 ↔ I − 1/2 & m = −I + 1/2 for
−I + 1/2 ↔ −I − 1/2 and the frequency shift is:

(Δν)rf =
[I]
4ν0

[
∂ν

∂B
Brf

]2

(76)
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Figure 3: Current in NMR RF coils for a set amplitude of Vset = 300 mV. The NMR RF coils resonate at
about 20 kHz.

4 An Experimental Study of the NMR RF Shift Effect

To study the NMR RF Shift effect, we took data for:

1. fields of 13 Gauss and 23 Gauss

2. NMR RF frequencies of 25.0 kHz, 30.0 kHz, 35.0 kHz, and 56.6 kHz

3. NMR RF set amplitude from 25 mV up to 600 mV or whatever value the NMR RF amplifier would
overload

4. 39K in the “well” state

At typical sequence is depicted in Fig. (4). For each data set, we would measure the EPR frequency, the
current in the Helmholtz coils, and the current in the NMR RF coils. For all of the measurements, the
current in the Helmholtz coils was very stable and the 3He polarization had reached equilibrium. Therefore
any change in the EPR frequency was mostly due to the NMR RF field.

After collecting this data, we plot the shift vs. NMR RF set amplitude, see Fig. (5). The expected
quadratic behavior is readily seen. We don’t expect the NMR RF frequency to play a direct role in the shift.
Therefore we measured the current in the NMR RF coils vs. NMR RF frequency for a fixed set amplitude
Vset, see Fig. (3). To make all the data comparable, we convert the shift into the amplitude of the RF field
causing it using Eqn. (76). Since the same set amplitude doesn’t correspond to the same current in the
NMR RF coils for different NMR RF frequencies, we plot the data vs. the current in the RF coils instead.
When we do this, if our calculation is correct, then all the data should lie on a line. To better than 5%, this
is true and we get a slope of 182 mG/A.
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Figure 4: Shift in the EPR Frequency for an NMR RF Field at 25 kHz. The top plot shows the magnitude of
the holding field as measured from the current in the Helmholtz coils. Over the course of the measurement, it
was stable to a few milligauss. The middle plot shows the current in NMR RF coils. During the measurement,
the RF field was turned off and on at linearly increasing amplitudes. The bottom plot shows the locked EPR
frequency as the NMR RF field is varied. The measurement was done at the end of a spin-up, so we assume
that the 3He polarization was at equilibrium. The field due to the polarized 3He is about 40 milligauss,
which corresponds to a frequency shift of about 30 kHz. The magnitude of the NMR RF field is increased
linearly, whereas the shift is increasing in a quadratic manner. At around t = 700 sec, there was a glitch in
the RF amplitude. In addition, the NMR RF amplifier overloaded at around t = 1175 sec. Both of these
features can be seen in both the bottom two plots.
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Figure 5: Measurement of (Δν)rf under different conditions. We measured the NMR RF shift at two
different fields, four different NMR RF frequencies, and several NMR RF field amplitudes. The top plot
shows the shift plotted against set amplitude. Except for the 25.0 kHz, 13 Gauss data set, there was a linear
relationship between the current in the NMR RF coils and the set amplitude. For the 25.0 kHz, 13 gauss
data set, a glitch occurred during the measurement, see Fig. (4). For the bottom plot, we’ve inserted the
measured shift into Eqn. (76) and solved for the amplitude of the NMR RF field in the lab frame. Once this
value for Brf is plotted against the measured current Irf in the NMR RF coils, the data cluster along a line.
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